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Expressions for calculating the coolant heating and the maximum wall tempera- 
ture in a cooling channel filled with a porous material are given. 

Heat exchange between the heated wall and the coolant is intensified considerably if the 
cooling channel is filled with a porous metal. This fact has been established theoretically, 
in particular, in [i], and experimentally, in [2]. 

In order to estimate theoretically the efficiency of such a cooling method, it is neces- 
sary to solve the well-known system of differential equations describing the temperature field 
within the porous insert in the channel. The solution of this problem has been treated in [i, 
3-5]. Numerical methods requiring the use of computers and the development of a relatively 
complex program are described in [i, 3]. The investigations described in [4, 5] are devoted 
to an analytical solution of this problem. Two simplifying assumptions are used in [4]: i) 
the thermal conductivity of the porous insert in the direction of coolant flow is zero; 2) 
the insert temperature is equal to the coolant temperature. These assumptions are used with- 
out any substantiation, which, in our opinion, somewhat diminishes the value of the results 
obtained. A similar problem has been solved in [5] on the basis of only one simplifying 
assumption (the first of the above two). As a result of using this assumption, the problem 
is reduced to a sequence of standard mathematical operations, whereby expressions for cal- 
culating the temperature fields in the form of sums of infinite series can be obtained. In 
our opinion, there are two obstacles to the utilization of the results obtained in [5]: first, 
a lack of justification for using the above assumption and, second, the necessity of summing 
a rather complex infinite series. 

We propose elementary equations for calculating the coolant heating and the maximum 
wall temperature of a cooling channel filled with a porous metal on the basis of the numerical 
solution of this problem [3] and its analysis. 

We shall now describe the calculation procedure. We contemplate a cooling channel con- 
sisting of the annular region between two coaxial tubes. It is assumed that the temperature 
field in the channel is described by the system of equations 

• 2 + O~T/Og 2 + g-~OT/Og = ~ (T  - -  T), O~Ox = ~ (T  - -  T). (1)  

The boundary condition at the inside wall of the channel, whose dimensionless radius 
is Yn, is the following: 

- - O T , / O g  = ~ (1 - -  T~). (2)  

The outside wall of the channel is assumed to be thermally insulated: 3Tv/3y = 0. 

The condition at the channel inlet is given by 

- -OTa/Ox = ~aax (~- - -  Ta).  (3)  

We have a similar condition at the surface of the channel outlet: 

- - O T j O x  = ~ b ~  (Tb - -  %). 

On the basis of the elementary energy balance, the coolant temperature at the surface 
of the channel inlet and the temperature at a point remote from the surface of the channel 
outlet are given by 

~a = gaTa "~ (1 - -  ~a) T-,  ~+ --  ObTb -~ (1 - -  ~b)~b. (4)  
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TABLE i. Approximation Coefficients A i (odd columns) and a i 
(even columns) 

yn=O, I Yn=0,5 ~n=~, 0 I Yn=e'~ 

~n = 0,01 
--2,42 --2,78 --2,05 --2,30 I --1,90 --2,10 I --1,83 - - 2 , 0 0  

--0,549 --0,978 --0,639 --0,971 --0,681 --0,962 I --0,700 --0,956" 
O, 133 7, 15--3 O, 103 --5, 18--3 8,52--2 --1,31--2 7,57--2 --1,79--2 

l~n = 0,1 
--1,42 --1,78 --1,06 --1,30 I --0,918 --1,11 I --0,856 --1,02 

--0,499 --0,929 --0,531 --0,865 --0,542 --0,825 [ --0,546 --0,804 
9,89--2 --2,63--2 3,42--2 --7,34--2 --2,00--3 --9,64--2 --1,35"2 --0,107 

13~ = 1,0 
--0,525 --0,867 --0,299 --0,522 --O, 229 --0,395 I --0,200 --0,338 
--0,315 --0,749 --0,280 --0,615 --0,265 --0,549 [ --0,259 --0,516 
9,50--2 --0,118 --4,50--2 --0,158 --6,53--2 --0,170 --7,41--2 --0,175 

13n = 10 
---8,74.-2 --0,387 --3,19--2 --0,212 --1,81--2 --0,144 I--1,30--2 --0,113 
---8,72--2 --0,515 --6, 18~2 --0,385 J--5'51--2 --0,324 I --5,25--2 --0,295 
--1,59--2 ---0,152 --2,49--2 --0,148 I --2,69--2 --0,141 "2,77--2 --0,137 

!Sn = 100 
--9,05--3 --2,286 --2,83--3 --0,167 --  1,43--3 --0, 115 --9,26--4 --8,98-- 
- -  1,07--2 --0,427 --6,80--3 --0,318 --5,84--3 --0,264 --5,49--3 --0,2372 
--2,71--3 --0,141 --3,05--3 --0,126 --3,09--3 --0, 116 , --3,09--3 --0, I10 

Remark. For brevity, the decade base number has been omitted, 
and only the exponent is given. Thus, for instance, 9.50- 
3 = 9.50"10 -3 �9 

In particular, it follows from (4) that o a and ~ vary in the range from zero to unity. 

The values of Tma x and AT are of the greatest interest in calculating through-flow 
porous cooling, For brevity, we shall refer to these values as the process characteristics. 
Analyzing the above expressions, we arrive at the conclusion that the process characteristics 
are generally functions of the following arguments: • ~, o, Yn, ~ and o b. There are evi- 
dently too many of them for establishing sufficiently simple correlations. We shall try to 
reduce their number. 

First of all, we shall limit the • number to the following range: 0 ~• 1. In this 
case, calculations show that the variation of ~, with the other numbers held constant, hardly 
alters the values of the process characteristics. This makes it possible to eliminate • as 
an argument. Furthermore, calculations show that variation of the a a and o b values from 
zero to unity also exerts a negligible effect on the process characteristics. Thus, Tma x 
and At are essentially functions of three arguments, ~, o, and Yn- There is also the pos- 
sibility of eliminating o from the number of arguments: calculations indicate that, beginning 
with a o value approximately equal to i0, the process characteristics, for practical purposes, 
no longer depend on this dimensionless number. Thus, in order to eliminate o it is sufficient 

to assume that o ~ i0. 

On the basis of the above, we reach the conclusion that the process characteristics can 
Be estimated with sufficient accuracy with respect to the assigned ~ and Yn values. Figure i 
shows the values of Tmax and A~ as functions of ~ for the particular case Yn = =- 

For any Yn, the dependence of the process characteristics on ~ is approximated in the 

following manner: 

F = A1 + A~z + A3z z, f = al q- a2z + ~ z  2. (5) 

The values of the approximation coefficients A i and a i are given in Table l. As an example, 
we shall determine the specific form of (5) for Yn = 0.5 and ~n = 0.i. As a result, we 

obtain 

F = - - l , 0 6 - - 0 , 5 3 1 z q - O , O 3 4 2 z  ~, f = - - 1 , 3 0 - - 0 , 8 6 5 z  ~-0,0734z z. 

It should be noted that the diagrams in Fig. I and the approximations provided hold for 
o ~ i0 and 0 <• i, regardless of the values of oa and o b. The value of ~ varies from 0.01 

to i00. 
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Fig. i. Dependence of Tma x (a) and At (b) on z and B n for Yn = 
~: 0 4• a a, o b ~ i; a > I0. The figures at the curves repre- 
sent the B n values. 

NOTATION 

T and T, dimensionless temperatures of the insert material and the coolant, respectively: 
T = (T' -- TI)/T, T = (T' -- TI)/T, T = @' -- Ti; x, dimensionless coordinate directed along the 
coolant flow: x = x'/L; L, length of the porous insert; y, dimensionless coordinate perpendic- 
ular to the x axis: y = y'/H; H, height of the porous insert' F = log Tmax, f = log At; At = 
<T+>-- T_, z = log ~; Ai, a i, coefficients; %x and Xy, thermal conductivity coefficients of the 
porous material in th~ corresponding directions; ~V' volumetric heat-transfer coefficient in 
the porous material; m, ratio of the coolant discharge to the cross-sectional area of the 
channel; Cp, specific heat of the coolant; an, heat-transfer coefficient characterizing heat 
exchange between the inner wall of the channel and a certain medium; ~a(b), heat transfer coef- 
ficient characterizing heat exchange between the coolant and the inlet (outlet) surface of the 

- -  2 2 _ I  �9 - - 1  �9 2 insert. Dimensionless numbers: • kx H (kyL) , o : ~vL(mcp) , ~ = mcpH (kyL) -I, Bn = ~nH/ 
ky, ~x = ~cpL/kx, aa(b) : oa(b)/(mcp). Superscripts or subscripts: the prime (') denotes a 
dimensional quantity; n or v, quantities pertaining to the inner or outer wall of the channel; 
a or b, quantities pertaining to the inlet or outlet surface of the porous insert; -- or +j 
quantities pertaining to a region remote from the inlet or outlet of the porous insert; max, 
maximum; brackets: <...>, quantity averaged over the insert height; 0', ambient temperature. 

. 

2. 
3. 

4. 

5. 

LITERATURE CITED 

J. Koch and R. Coloni, Teploperadacha, 96, No. 3, 66-74 (1974). 
J. Koch and R. Stevens, Teploperedacha, 9_~7, No. 2, 153-154 (1975). 
A. V. Kurpatenkov, V. M. Polyaev, and A. L. Sintsov, Inzh.-Fiz. Zh., 47, No. 6, 984-991 
(1984). 
V. A. Maiorov, V. M. Polyaev, L. L. Vasil'ev, and A. I. Kiselev, Inzh.-Fiz. Zh., 4-7, No. 
I, 13-24 (1984). 
V. A. Major,v, V. M. Polyaev, and L. L. Vasil'ev, Inzh.-Fiz. Zh., 47, No. 2, 199-204 
(1984). 

993 


